Search results for "Mechanical impedance"
showing 9 items of 9 documents
On the use of the electromechanical impedance technique for the assessment of dental implant stability: Modeling and experimentation
2014
We propose the electromechanical impedance technique to monitor the stability of dental implants. The technique consists of bonding one wafer-type piezoelectric transducers to the implant system. When subjected to an electric field, the transducer induces structural excitations which, in turn, affect the transducer’s electrical admittance. The hypothesis is that the health of the bone surrounding the implant affects the sensor’s admittance. A three-dimensional finite element model of a transducer bonded to the abutment of a dental implant placed in a host bone site was created to simulate the progress of the tissue healing that occurs after surgery. The healing was modeled by changing the …
Electromechanical Impedance Method to Assess the Stability of Dental Implants
2017
In this paper we illustrate the application of the electromechanical impedance (EMI) technique, popular in structural health monitoring, to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. When subjected to an electric field, the transducer induces low to high frequency structural excitations which, in turn, affect the transducer's electrical admittance. As the structural vibrations depend on the mechanical impedance of the host structure (in this case the implant secured to the jaw), the measurement of the PZT's admittance can infer the progress of the osseointegration process. In the study presented in th…
On the repeatability of the EMI for the monitoring of bonded joints
2015
We study the feasibility and the repeatability of the electromechanical impedance (EMI) method for the health monitoring of lightweight bonded joints. The EMI technique exploits the coupling between the displacement field and the potential field of a piezoelectric material, by attaching or embedding a piezoelectric transducer to the structure to be monitored. The sensor is excited by an external voltage and the electrical admittance which is the ratio between the electric current and the applied voltage is measured as it depends on the mechanical coupling between the transducer and the host structure. Owing to this interaction, the admittance may represent a signature for the health of the …
On the use of EMI for the assessment of dental implant stability
2014
The achievement and the maintenance of dental implant stability are prerequisites for the long-term success of the osseointegration process. Since implant stability occurs at different stages, it is clinically required to monitor an implant over time, i.e. between the surgery and the placement of the artificial tooth. In this framework, non-invasive tests able to assess the degree of osseointegration are necessary. In this paper, the electromechanical impedance (EMI) method is proposed to monitor the stability of dental implants. A 3D finite element model of a piezoceramic transducer (PZT) bonded to a dental implant placed into the bone was created, considering the presence of a bone- impla…
Modeling the electromechanical impedance technique for the assessment of dental implant stability
2015
We simulated the electromechanical impedance (EMI) technique to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. When subjected to an electric field, the transducer induces structural excitations which, in turn, affect the transducer's electrical admittance. As the structural vibrations depend on the mechanical impedance of the element, the measurement of the transducer's admittance can be exploited to assess the element's health. In the study presented in this paper, we created a 3D finite element model to mimic a transducer bonded to the abutment of a dental implant placed in a host bone site. We simulate…
Electromechanical impedance method for the health monitoring of bonded joints: Numerical modelling and experimental validation
2014
The electromechanical impedance (EMI) method is one of the many nondestructive evaluation approaches proposed for the health monitoring of aerospace, civil, and mechanical structures. The method consists of attaching or embedding one or more wafer-type piezoelectric transducers (PZTs) to the system of interest, the host structure, and measuring certain electrical characteristics of the transducers. As these characteristics are also related to the impedance of the host structure, they can be used to infer the mechanical properties of the monitored structure. In the study presented in this paper, we utilize the EMI to monitor the quality of adhesively bonded joints. A finite element formulati…
Modelling the Electromechanical Impedance Method for the Prediction of the Biomechanical Behavior of Dental Implant Stability
2015
Abstract We propose the electromechanical impedance (EMI) technique to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. Conventionally, electromechanical admittance is used to diagnose structural damage. In this study, we created a 3D finite element model to mimic a transducer bonded to the abutment of a dental implant placed in a host bone site. We simulated the healing after surgery by changing the Young's modulus of the bone-implant interface. The results show that as the Young's modulus of the interface increases, the electromechanical characteristic of the transducer changes.
Onthe repeatability of electromechanical impedance for monitoring of bonded joints
2015
The repeatability and sensitivity of the electromechanical impedance (EMI) method when employed for the structural health monitoring of bonded joints were investigated. A simple joint was assembled by bonding an aluminum strip to a square aluminum plate. Two rounds of experiments were performed. The first set aimed at verifying the repeatability of the method. The joint was monitored by using one piezoelectric sensor. The PZT was glued to the plate and never removed, whereas a poorly bonded joint was assembled and disassembled three times. For each case, the electromechanical signature was measured during the curing of the adhesive. After the three tests, the same joint was built with a dif…
An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves
2015
We propose a structural health monitoring (SHM) paradigm based on the simultaneous use of ultrasounds and electromechanical impedance (EMI) to monitor waveguides. Methods based on the propagation of guided ultrasonic waves (GUWs) are increasingly used in all those SHM applications that benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. Meantime, impedance-based SHM promises to adequately assess locally the structural integrity of simple waveguides and complex structures such as bolted connections. As both methods utilize piezoelectric transducers bonded or embedded to the structure of interest, this paper describes a unified SHM para…