Search results for "Mechanical impedance"

showing 9 items of 9 documents

On the use of the electromechanical impedance technique for the assessment of dental implant stability: Modeling and experimentation

2014

We propose the electromechanical impedance technique to monitor the stability of dental implants. The technique consists of bonding one wafer-type piezoelectric transducers to the implant system. When subjected to an electric field, the transducer induces structural excitations which, in turn, affect the transducer’s electrical admittance. The hypothesis is that the health of the bone surrounding the implant affects the sensor’s admittance. A three-dimensional finite element model of a transducer bonded to the abutment of a dental implant placed in a host bone site was created to simulate the progress of the tissue healing that occurs after surgery. The healing was modeled by changing the …

AdmittanceMaterials scienceMechanical Engineeringmedicine.medical_treatmentfinite element methodosseointegrationPiezoelectricityFinite element methodOsseointegrationTransducerdental implant stabilitymedicineGeneral Materials ScienceImplantDental implantElectromechanical impedance techniqueAbutment (dentistry)Biomedical engineering
researchProduct

Electromechanical Impedance Method to Assess the Stability of Dental Implants

2017

In this paper we illustrate the application of the electromechanical impedance (EMI) technique, popular in structural health monitoring, to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. When subjected to an electric field, the transducer induces low to high frequency structural excitations which, in turn, affect the transducer's electrical admittance. As the structural vibrations depend on the mechanical impedance of the host structure (in this case the implant secured to the jaw), the measurement of the PZT's admittance can infer the progress of the osseointegration process. In the study presented in th…

Materials scienceAdmittanceAcousticsmedicine.medical_treatmentMechanical impedanceOsseointegrationFinite element methodTransducerEMI methodFEM analysis.medicineDental Implant stabilityStructural health monitoringSettore ICAR/08 - Scienza Delle CostruzioniDental implantAbutment (dentistry)Structural Health Monitoring 2017
researchProduct

On the repeatability of the EMI for the monitoring of bonded joints

2015

We study the feasibility and the repeatability of the electromechanical impedance (EMI) method for the health monitoring of lightweight bonded joints. The EMI technique exploits the coupling between the displacement field and the potential field of a piezoelectric material, by attaching or embedding a piezoelectric transducer to the structure to be monitored. The sensor is excited by an external voltage and the electrical admittance which is the ratio between the electric current and the applied voltage is measured as it depends on the mechanical coupling between the transducer and the host structure. Owing to this interaction, the admittance may represent a signature for the health of the …

Electromechanical impedance methodCouplingStructural health monitoringAdmittanceMaterials scienceElectronic Optical and Magnetic MaterialAcousticsLightweight structureBonded jointComputer Science Applications1707 Computer Vision and Pattern RecognitionRepeatabilityCondensed Matter PhysicsPiezoelectricityApplied MathematicTransducerEMIStructural health monitoringElectrical and Electronic EngineeringVoltageSPIE Proceedings
researchProduct

On the use of EMI for the assessment of dental implant stability

2014

The achievement and the maintenance of dental implant stability are prerequisites for the long-term success of the osseointegration process. Since implant stability occurs at different stages, it is clinically required to monitor an implant over time, i.e. between the surgery and the placement of the artificial tooth. In this framework, non-invasive tests able to assess the degree of osseointegration are necessary. In this paper, the electromechanical impedance (EMI) method is proposed to monitor the stability of dental implants. A 3D finite element model of a piezoceramic transducer (PZT) bonded to a dental implant placed into the bone was created, considering the presence of a bone- impla…

Materials sciencemedicine.medical_treatmentStiffnessOsseointegrationTransducerEMIElectromechanical impedance method dental implants finite element methodsmedicinePulp canalImplantmedicine.symptomDental implantAbutment (dentistry)Biomedical engineering
researchProduct

Modeling the electromechanical impedance technique for the assessment of dental implant stability

2015

We simulated the electromechanical impedance (EMI) technique to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. When subjected to an electric field, the transducer induces structural excitations which, in turn, affect the transducer's electrical admittance. As the structural vibrations depend on the mechanical impedance of the element, the measurement of the transducer's admittance can be exploited to assess the element's health. In the study presented in this paper, we created a 3D finite element model to mimic a transducer bonded to the abutment of a dental implant placed in a host bone site. We simulate…

Finite element methodAdmittanceMaterials scienceDental implantAcousticsmedicine.medical_treatmentFinite Element AnalysisBiophysicsBiomedical EngineeringBone and BonesOsseointegrationOsseointegrationElastic ModulusElectric ImpedancemedicineOrthopedics and Sports MedicineDental implantDental ImplantsElectromechanical impedance methodDental stabilityRehabilitationMechanical impedanceModels TheoreticalPiezoelectricityFinite element methodTransducerBiophysicAbutment (dentistry)Biomedical engineering
researchProduct

Electromechanical impedance method for the health monitoring of bonded joints: Numerical modelling and experimental validation

2014

The electromechanical impedance (EMI) method is one of the many nondestructive evaluation approaches proposed for the health monitoring of aerospace, civil, and mechanical structures. The method consists of attaching or embedding one or more wafer-type piezoelectric transducers (PZTs) to the system of interest, the host structure, and measuring certain electrical characteristics of the transducers. As these characteristics are also related to the impedance of the host structure, they can be used to infer the mechanical properties of the monitored structure. In the study presented in this paper, we utilize the EMI to monitor the quality of adhesively bonded joints. A finite element formulati…

Electromechanical impedance methodFinite element methodStructural health monitoringBonded jointBuilding and ConstructionCivil and Structural Engineering
researchProduct

Modelling the Electromechanical Impedance Method for the Prediction of the Biomechanical Behavior of Dental Implant Stability

2015

Abstract We propose the electromechanical impedance (EMI) technique to assess the stability of dental implants. The technique consists of bonding a piezoelectric transducer to the element to be monitored. Conventionally, electromechanical admittance is used to diagnose structural damage. In this study, we created a 3D finite element model to mimic a transducer bonded to the abutment of a dental implant placed in a host bone site. We simulated the healing after surgery by changing the Young's modulus of the bone-implant interface. The results show that as the Young's modulus of the interface increases, the electromechanical characteristic of the transducer changes.

non-destructive examination.AdmittanceMaterials sciencemedicine.medical_treatmentfinite element methodModulusosseointegrationGeneral Medicinenon-destructive examinationPiezoelectricityFinite element methodTransducerEngineering (all)EMImedicinedental stabilityelectromechanical impedance methodDental implantAbutment (dentistry)Engineering(all)Biomedical engineering
researchProduct

Onthe repeatability of electromechanical impedance for monitoring of bonded joints

2015

The repeatability and sensitivity of the electromechanical impedance (EMI) method when employed for the structural health monitoring of bonded joints were investigated. A simple joint was assembled by bonding an aluminum strip to a square aluminum plate. Two rounds of experiments were performed. The first set aimed at verifying the repeatability of the method. The joint was monitored by using one piezoelectric sensor. The PZT was glued to the plate and never removed, whereas a poorly bonded joint was assembled and disassembled three times. For each case, the electromechanical signature was measured during the curing of the adhesive. After the three tests, the same joint was built with a dif…

Materials sciencePiezoelectric sensorElectromechanical impedanceStructural systemMechanical engineeringAerospace EngineeringRepeatabilitySettore ING-IND/04 - Costruzioni E Strutture AerospazialiElectrical impedance
researchProduct

An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves

2015

We propose a structural health monitoring (SHM) paradigm based on the simultaneous use of ultrasounds and electromechanical impedance (EMI) to monitor waveguides. Methods based on the propagation of guided ultrasonic waves (GUWs) are increasingly used in all those SHM applications that benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. Meantime, impedance-based SHM promises to adequately assess locally the structural integrity of simple waveguides and complex structures such as bolted connections. As both methods utilize piezoelectric transducers bonded or embedded to the structure of interest, this paper describes a unified SHM para…

Electromechanical impedance methodEngineeringStructural health monitoringbusiness.industryAcousticsTransduction (psychology)Damage detectionGuided ultrasonic waveTransducerSoftwareEMIElectronic engineeringUltrasonic sensorSensitivity (control systems)Structural health monitoringbusinessSafety Risk Reliability and QualitySettore ING-IND/04 - Costruzioni E Strutture AerospazialiSettore ICAR/08 - Scienza Delle CostruzioniElectrical impedanceCivil and Structural Engineering
researchProduct